
Theor Chim Acta (1993) 84:301-314 Theoretica
Chimica Acta
© Springer-Verlag 1993

Parallel direct SCF for large-scale calculations

M. E. Colvin, C. L. Janssen, R. A. Whiteside*, and C. H. Tong
Center for Computational Engineering, Sandia National Laboratory, Livermore, CA 94551, USA

Received October 1, 1991/Accepted June 29, 1992

Summary. Quantum chemistry has become an essential tool in many areas of
chemical research; however, quantum chemistry is not yet playing a role in many
exciting new chemical disciplines, such as medicinal chemistry and materials
science, where the size of the chemical systems has been too large to study using
ab initio chemical methods. The development of massively parallel supercomput-
ers offers the potential to predict properties relevant to a variety of problems in
these burgeoning new fields. The goal of this project is to develop a set of
parallelized "production codes" for initially a relatively limited set of methods.
As a key part of this project we are experimenting with the use of modern
programming languages and methodologies to make these programs both
portable and reusable. This paper describes the development of a massively
parallel direct SCF program, MPSCF. For systems over a few hundred basic
functions, MPSCF running on 256 nCUBE processors performs nearly as well as
Gaussian 90 running on a single processor Cray Y-MP. On the next generation
of parallel computers, such as the Intel Touchstone Delta, MPSCF should allow
the SCF calculations on chemical systems too large for vector supercomputers.

Key words" Parallel direct SCF Quantum chemistry - MPSCF - LAN

1 Introduction

Quantum chemistry has become an essential tool in many areas of chemical
research; however, quantum chemistry is not yet playing a role in many exciting
new chemical disciplines, such as medicinal chemistry and materials science,
where the size of the chemical systems has been too large to study using ab initio
chemical methods. Yet the relatively low accuracy needed to provide useful
results and their tremendous practical importance make these very promising
new applications for quantum chemistry. The development of massively parallel
supercomputers offers the potential to predict properties relevant to a variety of
problems in these burgeoning new fields. We envision two broad classes of

* Present address: Hypercube Inc. c/o Autodesk Inc, Sausalito, CA, USA

302 M.E. Colvin et al.

parallel computer becoming important in the next few years. The first are the
massively parallel supercomputers such as the nCUBE 2 and the Intel Touchstone
which can outperform vector supercomputers for some applications. The other
will be implicit in the large networks of high-performance workstations located
in many research institutions. Harnessed together to work on a single calculation,
these local area networks (LANs) constitute a very large, as yet untapped
resource. However, the relatively limited bandwidth of current LANs will limit
their performance in the near future. Both of these classes of parallel computers
involve unique programming challenges and since our goal is to perform
calculations on extremely large chemical systems we have focused our develop-
ment effort on the massively parallel supercomputers.

The potential of parallel computers has not gone unnoticed by quantum
chemists. Since the mid-1970's there have been several efforts to parallelize
quantum chemistry programs [1, 2]. However, due to the experimental nature of
the early parallel computers, these programs were mainly "proofs of principle"
and not alternatives to production programs on serial computers. With advances
in parallel processing hardware, there has been a growing interest among quantum
chemists. A recent conference on parallel quantum chemistry [3] attracted more
than thirty participants who presented papers on parallel SCF and post-SCF
methods.

The goal of this project is to develop a set of parallelized "production codes"
for initially a relatively limited set of methods. As a key part of this project we
are experimenting with the use of modern programming languages and method-
ologies to make these programs both portable and reusable. This paper describes
the first step in this effort, the massively parallel direct SCF program, MPSCF.

2 Algorithms

Developing algorithms for parallel computers is particularly challenging due to
the fact known as "Amdahl's law" - that the parallel speedup is at best the
inverse of the fraction of the code that is serial. This fact frequently undermines
the effectiveness of automatic parallelizing compilers, especially for large hetero-
geneous programs typical of quantum chemistry applications. Hence, parallel
programming is not automatic and involves manually breaking up algorithms
into individual modules to run on different processors. Although there are a
large number of different parallel architectures available, at this time message-
passing, multiple-data multiple-instruction (MIMD) [4] architectures are the
most flexible and extensible. For this reason we are targeting this general class of
machine with the specific goal of using the nCUBE/2 and the Intel i860 and Intel
Delta computers. (See Appendix for a detailed description of these computers.)

The first quantum chemical application that we have parallelized is the
self-consistent field (SCF) method. A simplified version of the computational
steps involved in a direct SCF are shown in Fig. 1. The SCF method is an
iterative procedure involving the repeated formation and diagonalization of a
matrix of order up to a few thousand for our chemical applications. The iterative
procedure naturally separates into two portions, the matrix operations (steps 2,
4, & 5) and the Fock matrix formation which will be separately discussed in the
following paragraphs. As implemented, MPSCF is slightly more sophisticated
than the algorithm described in Fig. 1. In particular, rather than calculate the
Fock matrix directly as shown in step 3, only the change in the Fock matrix

Parallel direct SCF for large-scale calculations 303

Steps in SCF calculation: Computational complexity
in terms of # basis functions, N

1) Generate initial guess at SCF vector C.
2) Form density matrix P = CtC. O(N 3)
3) Calculate two electron integrals O(N 4)

and combine with P to form Fock matrix F:

F~v = Y P.(C.u I~°~ - ½C.~ I u~))
2a

4) Transform F using the inverse root of the overlap matrix:
F t = S - 1 / 2 t 7 S - 1/2, O (N 3)

5) Calculate eigenvectors of F* and O(N 3)
backtransform to form new C.

6) Stop if C is converged, else go to 2.

Fig. 1. Steps in the two-electron portion of a self-consistent field (SCF) calculation

is calculated:
new = F o l d F~v -~v + Z APao[(#v I 2a) -- ½(#2 Iva)]

2a

The advantage of this approach is that as the calculation converges the elements
of AP becomes small. This, along with methods for estimating the upper bounds
of two-electron integrals (discussed later) drastically reduces the computational
effort of forming the Fock matrix [5].

Additionally, MPSCF includes the DIIS method developed by Pulay for
accelerating SCF convergence [6]. The DIIS procedure involves extrapolating the
Fock matrix as a linear combination of Fock matrices that minimize the error
matrix:

g = E P S - S P F

Computationally, DIIS involves several matrix multiplies and the solution of a set
of linear equations of very low order (typically 5).

A natural way to parallelize SCF is to distribute the matrix formation and
manipulation. An important initial consideration is whether to distribute the
storage of the matrices or just the computational load. For a direct SCF
calculation at minimum both the Fock and density matrices must be available on
the processing nodes. This requires nbasis*nbasis (nbasis = #bas is functions)
double precision words to be stored. Since we are interested in running calcula-
tions with up to several thousand basis functions we will not be able to fit complete
copies of these matrices on each node of even the largest parallel computers now
available. There are many possible schemes for evenly distributing the storage of
square matrices. For example, in a column distribution scheme each processor
would be assigned one or more columns of the matrix. In block distribution, each
processor is given a set of submatrices obtained by dividing the matrix into
sub-blocks. However, the additional need to both minimize and evenly balance
the computational load adds more constraints. The expressions for the two-elec-
tron integrals over basis functions in the same shell block involve many common
sub-expressions. The efficiency of calculating these terms can be greatly improved
by calculating such groups of integrals as a batch. As shown in the equation in
Fig. 1, each Fock matrix element, Fay, contains contributions from the integrals

I ha) and (#2 [va). Therefore, if shell blocks of the Fock matrix are assigned
to the processors so that all # ' s and all v's in a particular shell block are on the

304 M.E . Colvin et al.

same processor the integral efficiency is greatly increased. Moreover, such a
distribution of the density matrix elements facilitates the estimation of upper
bounds on the Fock matrix elements (vide infra). For many of the matrix
operations, however, the most efficient algorithms currently available require the
matrices distributed by column. Hence, in the present version of MPSCF, the
block-distributed matrices are converted to column distribution for some of the
matrix manipulations.

Since the size and computational effort associated with each shell block is
different, the load balancing of the Fock matrix formation becomes an issue. For
this type of problem optimal load balancing is very difficult, formally equivalent to
the knapsack problem known to be NP complete [7]. However, the number of
shell blocks is roughly proportional to the number of basis functions squared,
while the maximum number of processors we can efficiently use it less than half of
the number of basis functions (see section on parallel matrix diagonalization).
Hence, even the simple method placing equal numbers of shell blocks (albeit all of
different size) on each processor yields adequate load balancing for the benchmark
reported herein which included only s and p type shell blocks. For cases involving
larger angular momentum or derivative integral evaluation, the variance in shell
block size will be much larger so that a more careful analysis is needed. Work is
underway to examine the effect that a more sophisticated distribution scheme can
have on load ~alancing for high angular momentum cases.

Since each Fock matrix element contains contributions from every density
matrix element, some form of communication is required between every pair of
processing elements during each SCF iteration. Many "complete shuffle" al-
gorithms are possible, but the simplest and least hardware dependent is a systolic
loop. All of the processors are assumed to be connected in a one-dimensional loop
(which can easily be embedded in a hypercube or mesh topology) and data packets
are passed around the ring in as many systolic steps as there are processors.

For the Fock matrix formation each processor sends out its density matrix
blocks and initially empty message buffers to accumulate contributions to its
locally held set of Fock matrix blocks (see Fig. 2). To illustrate this procedure,
consider the set of blocks APao and F~.~ arriving on the processing node assigned
the #v blocks. If the integral estimation procedure indicates that they are
significant, the processor computes the coulomb integrals (#v 12o-) and the
exchange integrals (#2 I va) and (#r~ Iv2). Note that if there are coincidences in

~v, AP~v

E~, APx~

Fig. 2. Formation of the Fock
matrix on a systolic loop of
processors. Each node makes
contributions from its locally held
density matrix elements and integrals
to the Fock matrix dements being
passed around the loop.
Additionally, the node makes
contributions from the density
matrix elements being passed around
the loop to its locally stored Fock
matrix dements

,(

Parallel direct SCF for large-scale calculations 305

the shell indices, some of these blocks are redundant. From these integral blocks,
contributions must be made to the locally held Fock matrix elements:

F~,v +- P~o(2~r I/~v)

and the Fock elements being communicated around the ring:

e v(v [
After all of the AP and F blocks have been sent around the processor ring, the
full two-electron Fock matrix has been formed. At this point the one-electron terms
are added and the Fock matrix is ready for transformation and diagonalization.

The computer time required for the formation of the Fock matrix is dominated
by the calculation of the two electron integrals. The actual number of operations
to evaluate an integral is very dependent on the basis function angular momentum
and the exact algorithm chosen. For the purpose of this simple analysis we will
assume that an average of a double precision (DP) floating point operations is
required. Hence, the total number of operations to form the Fock matrix will
range from about a N 4 down to approximately a N 2, if integral cutoffs are used,
(see below). Assuming that this work is evenly distributed over the processors
(p = the number of processors) and 7 is the processor speed in DP floating point
operations per second (FLOPS) the Fock matrix formation will require at
minimum aN2/p7 seconds. To pass the density and Fock matrix blocks around
the loop of processors requires p successive sends of approximately N2/p D P
words of data between neighboring processors. If we assume the startup latency
for communication is a seconds and the communication bandwidth between nodes
is fl D P words per second, the total communication time will be p~ + N2/fi. This
leads to a worst-case computation/communication ratio of aN2fl/[yp(pa + N2)].
Assuming 7 ~ fi and a is small, communication will start to dominate this step
when a N 2 < p N 2. Using our current two electron integral algorithm, a is in the
range of 100-1000 operations, so that the communication time is substantially less
than the computation time. This ratio is improved by the fact that the communi-
cation and computation is overlapped, so that processors are not idle during the
communication of the next set of shell blocks.

This algorithm requires storage of N2/p elements of the density and Fock
matrices per node. Additionally, an equal amount of message buffer space is
required. For the problems we have studied (<350 basis functions) these
required less than 32 Kbytes per node, an insignificant fraction of the available
memory on any of the parallel computers used (see Appendix).

Since the two electron integrals do not change during the SCF calculation a
choice must be made whether to precalculate and store the integral list or to
recalculate them in each i te ra t ion- this latter option is the "direct" SCF
method. Due to the limited memory and lack of efficient parallel I/O, storing the
integral list is impractical on massively parallel computers. Nevertheless, while
precalculating the integrals might seem to save much computational effort, there
are two reasons why direct methods are efficient even on serial computers. The
first is that the integral lists are so large that they must be stored on magnetic
disk, so the retrieval time can be a significant fraction of the time required to
recalculate the integral. More importantly, as will be described below, there are
fast methods for determining in each iteration which integral blocks need not be
calculated because they will not have significant contributions. A detailed
analysis of the algorithms necessary to perform SCF calculations on very large
systems has been performed by Panas et al. [8].

306 M, E. Colvin et al.

The integral estimation scheme implemented in MPSCF is that described by
H~iser and Ahlrichs [5]. This method exploits the relation:

v I (vv I I 0")1/2
Thus, to form the upper limit of any integral the matrix:

Q,v = (/zv I#v) l/2

is required. Actually since the integrals are computed by shell blocks Q need only
be nblocks x nblocks. The Q matrix is precalculated in parallel and matrix
element Q,v is distributed to all processors "responsible" for integrals (#v/20").
During each iteration, the upper bound of an integral sub-block is multiplied by
the corresponding element of AP and compared to a threshold (typically 10- lO).
If this value is below the threshold then the integral block is excluded from
contributing to the Fock matrix. In order to determine the effect of such cutoffs
on large direct SCF calculations, we ran a variety of different test calculations
using Gaussian 88 (which uses a simple integral cutoff algorithm) on our Cray
X-MP. The exponent of the overall computational complexity of the direct SCF
was determined using the relation:

(t ime~
log \ ~ /

Exponent = (.hi
log \nbfrefj

In this expression "time" is the total CPU time for the direct SCF calculation on
a problem whose number of basis functions equals "nbf". Similarly "timeref" is
the time for the reference calculation which has "nbfref" basis functions. A
medium sized, 133 basis function test case was used as a reference rather than a
very small test case in order to reduce the effect of overhead (such as reading the
input) on the timing results. The results, shown in Fig. 3, indicate that the cutoffs
can dramatically reduce the computational complexity of the direct SCF from
O(N 4) to O(N2'5), approaching the predicted asymptotic quadratic complexity
[8]. Note that the exact values of these exponents are somewhat dependent on
both the detail of the test calculations (e.g. the type of basis set and the shape
of the molecules) and the size of the reference compound.

4-

3-

m
cc~

&

3.0
2.9

150 189 201 216

Number of Basis Functions (n)

~/// /I / i /I /A
11<<l<//dlf~

1378

Fig. 3. Basis function power dependence for
complete direct SCF calculations using Gaussian
88 running on a Cray X-MP

Parallel direct SCF for large-scale calculations 307

As initially implemented, MPSCF used the sp block integral subroutine
"SHELL" from Gaussian 80 [9, 10] and was limited to only s and p type basis
functions. We are currently implementing a much more sophisticated integral
algorithm outlined by Head-Gordon and Pople [11]. This involves constructing
each set of contracted integrals (ab I cd) by first computing (e0 If0) where a, b,
c and d give the angular momentum on each center and e = a + b, f = c + d. The
integrals (e0 If0) are formed by contracting auxiliary integrals for each set of
primitive quartets which are computed using the vertical recursion relation of
Obara and Saika [12]. The horizontal recursion relation of Head-Gordon and
Pople is then used to shift the angular momentum of the (e0 If0) integrals until
the target integrals are formed. This algorithm will allow the inclusion of basis
functions with arbitrarily high angular momentum.

The results in Fig. 3 indicate that for large chemical systems (above a few
hundred basis functions) the integral estimation schemes mentioned above
decrease the computational complexity of the Fock matrix formation from
O (N 4) down to O(N25). Hence for chemical systems of the size we are interested
in studying, the Fock matrix formation will have an asymptotic complexity that
is lower than the matrix operations which are O(N3). Of course the multiplier of
these complexities is different; approximately 100 for the Fock matrix formation
(see analysis above) and 10 for the matrix manipulations. Nevertheless, for large
problem sizes the matrix manipulations will start to dominate the SCF computa-
tion even on serial computers. In a parallel direct SCF program with the
distributed Fock matrix formation and serial matrix manipulations, the problem
is even more acute. Hence in order to use efficiently even a modest number of
processors it is important to parallelize the O(N 3) matrix manipulations.

Using our distributed matrix library (implementation described in next
section) we have parallelized all of the matrix operations (except for the disk I/O
which is inherently serial on our nCUBE 2). At present this library supports
matrices distributed by sub-blocks and by columns. The two most common (and
time consuming) matrix operations in the SCF program are multiplication and
diagonalization. The matrix multiplication is implemented for both the column
and block-distributed matrices. However a "direct" implementation of the
matrix multiplication for the block-distributed matrix requires a large amount of
communication since to perform C =A * B, the product (AikBgj) must be
formed for every combination of sub-blocks. To minimize the communication
required to form these products, the matrices A and B are converted from block-
distributed to column-distributed format. Then, the columns of the matrix A are
shipped around the loop of processors combining with locally held columns of B
to form C. After the columns have been transmitted completely around this loop,

is° t ~ 512 x 512 matrix 2 0 [512 x 512 matrix 1
~ diagonalization ~ multiplication

°°I

32 64 128 256 16 32 64 128 256 512
Number of Processors Number of Processors

Fig. 4. Parallel timings for
matrix operations on the
nCUBE

308 M.E. Colvin et al.

(requiring 4~ processor steps), the column-distributed C matrix has been com-
pleted. Timing results for a 512 x 512 matrix multiply are shown in Fig. 4.

Using the definitions for p, N, e,/3, and 7 defined in the analysis of the Fock
matrix formation, the total time required for the floating point operators is 2N3/py
seconds. The total time required to pass a block containing a column of N values
around a loop N times is N(c~ + N/B), leading to a computation-communication
ratio of 2NZ/[pT(o~ ÷ N/fl)]. The matrix multiply requires storing at most N2/p
matrix elements on each node (with a minimum of one column from each matrix
in the case where p > N).

The parallel matrix diagonalization is based on an early version of Cleve
Moler's Eiscube routines. Basically, this is a column-distributed Householder
tridiagonalization followed by QR iteration. The timing results for this procedure
are also given in Fig. 4. The analysis is somewhat more complex than for the
matrix multiply. The total floating point operations required are 9N 3, giving a
total time of 9N3/pT. The matrix diagonalization requires a combination of global
broadcasts and reductions. This was implemented using the hypercube connectiv-
ity to yield a total communication cost of 3N(e + N/2B) log2(p) and a computa-
tion-communication ratio of 3NZ/[py(o~ +N/2/?)log2(p)]. The diagonalization
must store the original matrix, its eigenvectors and the tridiagonal reduction
space, yielding a total memory requirement of 3N2/2 words of memory.

3 Implementation

Implementation style has traditionally been a minor consideration in the develop-
ment of quantum chemistry programs. The emphasis on program efficiency and
the relatively awkward structuring and memory allocation features of F O R T R A N
have conspired to create quantum chemistry programs built of specialized
subroutines that were opaque and difficult to re-use. Similarly, since individual
quantum chemistry programs are usually used by small groups of users on a
narrow class of computers, usable documentation of the internal workings of the
programs is rare. This is particularly true for documentation of how the data is
organized within the programs. High-level data constructs such as the wave
function or basis set have components scattered across common blocks, inhibiting
code re-use and intelligibility. Despite these difficulties, quantum chemistry has
thrived; however, the growing complexity of the algorithms and the user interface,
as well as the need to port these codes to complex computer architectures will
require an increased emphasis on implementation issues within the community.

As an experiment we have implemented MPSCF using modern programming
methods intended to increase code portability and re-use. MPSCF is written in
the "C" programming language using a system for embedded code documentation
called WEB [13]. Additionally, MPSCF uses object-oriented programming
methodology [14] (although it's not written in a formally object-oriented language
such as C + +) .

Our choice of the C programming language was primarily motivated by
the availability of user-defined data types and standardized memory allocation
and de-allocation*. The ability to create "aggregate" data types allows the

* Other advantages of C include: standardized file I/O, compatibility with UNIX system libraries,
and numerous commercial and public-domain programming tools.

Parallel direct SCF for large-scale calculations 309

programmer to more naturally organize high-order data objects. For example, the
specification for a basis function data type could include in a single entity all
information associated with a particular basis function. This greatly simplifies the
organization of data within a program and leads to enhanced code reusability.

Additionally, we are going beyond the C language capability to describe
aggregate data types by using a language we have developed to describe both data
types and operations on that data type (analogous to classes in C+ + without
the rigorous protection of private data). Minor extensions to the C syntax have
been implemented to allow the automatic generation of subprograms to perform
many possible operations on complex aggregate data types. These operations
include reading and writing to many file formats, initializing the data types,
releasing the memory allocated for the data types, and sending and receiving the
data types between nodes of a parallel computer. Since the generation of these
routines is completely automatic it is only necessary to modify the type description
file and all of the routines for manipulating the type are updated. This greatly
reduces the work associated with implementing and modifying complex data
types. Currently, the basis set and atomic center information is handled using this
facility.

The ability in C to allocate and free arbitrary chunks of memory also enhances
code reusability since temporary storage can be allocated locally, simplifying the
interface between different portions of programs. Such local memory allocation
also allows memory to be used more efficiently which is particularly important on
massively parallel computers where memory is relatively limited.

In the WEB language, the program documentation and source are combined.
The program file (a ".web" file) can be run through preprocessors to produce
either a TeX document or a C-language source file (see Fig. 5). In addition to
simple text formatting, the WEB system provides a detailed index to the variables
and subroutines as well as a sophisticated "macro" facility to allow cleanly written
code without excessive numbers of subroutines. Since it is written in WEB, the
MPSCF program can be printed out as a readable "book" where each logical

SCF.web

hy ~5e ~arges~ density matrix element, and i f t ~ i s i s sma l l ,
~kip ~he evaluation o~ t~e integral block.

contrib . , ~s tm~ j , e s ~ l o g [l o c a l b] 'MaxPIJMI:

17 7contzi~ • c z n ~ s n ~ t

)
)

SCF.tex "Weave" p r o /

§6~ A ~ Y (~ t f i ~ ($ ~ .) " [~ TWO- ELSCq~ ON CONTip/BI/f ION] O A p 2.6

}}

~ e " p ~ ° g r a l C F . c

d~ubl~ = o n t r l b :
co~ t=±b - .~,t~ij • e , t l o g t X o = , l b]

17 i c o n t , i b • CT~R~S~) {

~ v e c [O l - ~ . h ; l v e c i l l - J s h : i w c [2 1 - . , h :

t E N t ~ . r , , ~ l l -) ;

i H

Fig. 5. Example of SCF.web code and c-source and TeX files generated using WEB programming tools

310 M . E . Colvin et al.

segment of the program is a separate chapter. This book contains a table of
contents to the major program segments and an index of the variables and
program sub-segments.

The MPSCF program is built on top of an object-oriented distributed matrix
library. This library is written in C which is not formally an object-oriented
language; however, with some effort, object-oriented methodologies can be used
when coding in C. The key concept behind the object-oriented methodology is to
encapsulate the high-level data structures and the associated functions. Experi-
ence on a wide variety of software applications has shown that this methodology
produces particularly robust and re-usable code [15].

We implemented all of the linear algebra operations requried by the direct SCF
algorithm in the distributed matrix library. Matrices are declared with a specific
size and parallel distribution scheme and all matrix operations are carried out using
functions within the library. The distribution of the matrix and the details of the
function implementation are transparent to the user. For example, the transfor-
mation and diagonalization of the Fock matrix would include the following code:

{
matrix s_half = dmLereate("S**(1/2)",nbasis,SCATTgRED);
matrix foek = dmt_create("Foek matrix",nbasis,SCATTERgD);
matrix trap = dmt_ereate("Temp matrix",nbasis,COLUMNS);
matrix foek_trans = dm_ereate("Trans.F matrix",nbasis,COLUMNS);
matrix tmp= dmt_ereate("Temp matrix",nbasis,eOLUMNS);

/* Form s_half and foek (code not shown) */

dmt_mult(s_half, foek,tmp);
dmt_mult(tmp,s_half, foek_trans);
dmt_diag(fock_trans,eig_vect,eig_val);

dmLwrite("scf_vect.dat",eig_vect);
dmt_free(tmp);

}
In the example, we first create four matrices using the dmt_create routine.

This associates a label, size, and distribution scheme with each of the matrices
and allocates memory on each node. After the Fock and S 1/2 matrices have
been created (code not shown), the dmt_mul t routine is used to transform the
Fock matrix and dmt_diag is used to diagonalize the result. Finally, the
eigenvector is written out to disk and the memory allocated for the temporary
matrix, tmp, is released.

4 Results and discussion

Parallel results traditionally have been presented solely in terms of speedup
curves (i.e. comparing an algorithm running on many processors to the same
algorithm running on one processor). Unfortunately these can be misleading for
a number of reasons. The main problem is that the best parallel algorithms are
rarely the best for serial computers. Hence the reference "single-processor"
timings on which the speedup results are based are usually biased in favor of the
parallel implementation. A better performance measure is to compare the
parallel implementation to a state-of-the-art serial implementation running on an
appropriate serial or vector computer. (Speedup results can augment these

Parallel direct s c F for large-scale calculations 311

0.8

A
d
o

n o 0.6

~,.~

~ . ~ 0.4
g o
O ~

o c
C C 0,2
o ~

¢o

0.13
82BF 164BF 246BF 328BF

Problem Size / Number of Processors

Fig. 6. Timing results for paralM direct SCF
running in nCUBE 2

performance comparisons to indicate how the parallel implementation will scale
up to larger parallel computers.)

For this reason we compared the performance of MPSCF with Gaussian 90
[16] running on a Cray Y-MP 8/864. The benchmark problems were a series of
cytosine polymers run with a 3-21G basis set in CI symmetry yielding test
problems with 82, 164, 246, and 328 basis functions. Figure 6 shows the results
for the test problems on different numbers of processors. Since the matrix
diagonalization is efficient only when the number of basis functions is greater than
the number of processors, we were limited to 256 processors (1/4 of the nCUBE
2) for even the largest of the test cases.

The results were very encouraging. For systems over a few hundred basis
functions, MPSCF running on 256 nCUBE processors performs nearly as well as
Gaussian 90 running on a single processor Cray Y-MP. Hence, for large problems,
the current version of MPSCF running on the full nCUBE should give roughly
four times the through-put of Gaussian 90 running on a Cray Y-MP (since
Gaussian can only use one processor at this time). Since the estimated peak
performance of a single Y-MP processor is nearly that of 256 nCUBE 2 nodes,
these results indicate that MPSCF has a net efficiency on the nCUBE comparable
to the efficiency of Gaussian 90 on the CRAY (but both are well below the peak
efficiency). This is significant because new parallel computers are considerably
more cost effective in terms of actual cost per unit of floating point performance
than vector supercomputers. Hence, for large-scale SCF calculations parallel
computers should be considerably more cost effective than vector supercomputers.

To get estimates of the asymptotic performance of the MPSCF program we
ran two speedup test sequences. These curves along with the ideal speedup line
are shown in Fig. 7. Due to the limited memory on each node, these speedups
were calculated from relatively small test cases. The lower curve is the speedup
for the 82 basis function cytosine monomer calculated relative to the timing on
a single processor. The middle curve is the speedup for the 164 basis function
cytosine dimer calculated relative to the timing on four processors (the smallest
number having enough total memory to run the problem). For both of these test
cases the parallel efficiency rapidly drops off as the number of processors gets
greater than about half the number of basis functions. The reasons for this drop
in efficiency are shown in Fig. 8. This figure compares the timings for the Fock
matrix formation and the matrix manipulations for the 82 basis function test
case running on different numbers of nCUBE 2 processors. The Fock matrix
formation is very efficient, even on 128 processors the parallel efficiency is greater
than 60%. In contrast, the matrix manipulation shows no speedup for more than

312 M.E. Colvin et al.

,=

256

128

64

ctions

~ Basis Functions

64 128 256

Number of nCUBE processors

Fig. 7. Speed-up curves for direct
SCF on the nCUBE 2 computer
for problems of size 82 and 164
basis functions

C O
o u .
~._~
._~

~o

[]Formation of Fock Matrix

[]Matrix Manipulations

1 2 4 8 16 32 64 128

~ O

O ~ .

. - x

Fig. 8. Comparison of parallel timings
for components of direct SCF
calculation for a problem with 82 basis
functions

16 processors and on 128 processors is requiring almost half as much time as the
Fock matrix formation (as compared to 3% on a single processor). This
indicates that the column distribution used in the matrix manipulations will limit
the performance of the parallel direct SCF unless the number of basis functions
is much greater than the number of processors being used.

5 Conclusions and future work

The results presented here show that for some applications, parallel computers
are a cost-effective alternative to vector supercomputers. However, the next
generations of parallel computers will have a much more significant impact since
they will provide the capability to perform quantum chemical calculations that
are at present unfeasible. Although predictions of future computational needs
and capabilities are notoriously inaccurate [17] they provide a useful measure of
future successes. Figure 9 is a projection of single point direct SCF capabilities
on a wide range of serial and parallel computers. This projection was made
assuming typical biochemical composition using 6-31G** basis sets. We assumed

Parallel direct SCF for large-scale calculations 313

-~ =

10(X)(

220

SG[4D/35

1200 1400

2800

8 3 0 0

1 Proc. LAN 1024 node 528 node
Cray Y/MP (100 4D/35's) nCUBE/2 Intel Delta

Computer

Fig. 9. Projected performance
of current and future
computers in terms of
molecular weight of
compounds for which a
6-31G** single point SCF
calculation can be performed
in a single day of CPU time

that the SCF computation time would scale as N 25 and included very crude
estimates of the communication overhead and processor efficiency. This plot
contains several interesting results. One is that local area networks of high-end
workstations will prove to be impressive computational resources, comparable to
single processors of vector supercomputers. However, the relatively low band-
width of conventional LAN's (e.g. ethernet) will not allow such networks to
supplant the role of parallel supercomputers. Another exciting implication of these
projections is that with the arrival of the Touchstone Delta, parallel computers
have sufficient power to allow SCF calculations on chemical systems large enough
to truly interest researchers in medicinal chemistry and materials science.

We plan eventually to extend the parallel quantum chemistry package to
include electron correlation methods such as coupled cluster and configuration
interaction. However, the difficulty of efficiently parallelizing these extremely
complex algorithms is overwhelming for a single research team. It is our hope that
the development of new programming tools and methodologies, such as those
described in this paper, will lead to more cooperative program development within
the quantum chemistry community. Such community synergism, combined with
the arrival of powerful new computer architectures, will guarantee that quantum
chemistry will play an important role in the exciting new fields of chemical
research.

Appendix

The performance characteristics of parallel computers are constantly changing,
but to inform the reader of the current state-of-the-art, the following table lists
the vital statistics for the nCUBE/2 and Intel IPSC/i860 installed and Sandia
National Laboratories and the Intel Touchstone Delta installed at the Concurrent
Supercomputing Consortium at the California Institute of Technology. The CPU
speeds and interprocessor communication rates are the estimates provided by the
manufacturers and should be interpreted as the "upper limits" on actual
capabilities. The estimated processor speeds, theoretical peak performances, and
DP Linpack benchmark results are from Dongarra [18]. The interprocessor
communication rates for the nCUBE and Intel i860 are our measured interproces-
sor bandwidths. The bandwidth for the Intel Delta are Intel's predicted peak rates.

314 M.E. Colvin et al.

Computer # Processors Estimated Memory per Interprocessor Theoretical Performance
processor processor communication peak on DP
speed bandwidth performance Linpack
(MFLOPS) (Mbytes/sec) (MFLOPS) benchmark

(MFLOPS)

nCUBE/2 1024 2.4 4 Mbytes 1.5 Mbytes/sec 2400 1900
(Sandia)
Intel i860 64 40 8 Mbytes 2.1 Mbytes/sec 2600 1400
(Sandia) /32 Mbytes [19]
Intel Delta 512 40 16 Mbytes 200 20000 13900
(Caltech) Mbytes/sec

Acknowledgments. This work was carried out at Sandia National Laboratory under contract by the
U.S. Department of Energy and supported by its Division of Basic Energy Sciences.

References

1. Clementi E, Corongui G, Detrich JM, Domingo L, Laaksonen A, Nguyen HL, Chin S (1984)
Tech Report No POK-40, IBM

2. Colvin ME, Whiteside RA, Schaefer HF III (1989) in: Wilson S (ed) Methods in quantum
chemistry Vol 3. Plenum, NY, p 167 237

3. Parallel Computing in Chemical Physics (1991) Org Theoret Chem Group, Argonne Natl Lab,
July 17-19, 1991. 700 S Cass Ave, Argonne, IL 60439

4. MIMD parallel computers consist of independent, interconnected CPU's communicating via
wires (message-passing) or a common memory bank (shared-memory). Shared memory MIMD
computers are easier to program than message-passing computers, but at this time cannot
efficiently interconnect large numbers of processors. Conversely, a message-passed architecture
can be readily emulated by a shared-memory computer. An alternative to MIMD architectures
is single-instruction multiple-data (SIMD) in which all processors work in lock-step, performing
identical instructions on different data streams

5. H~iser M, Ahlrichs R (1989) J Comput Chem 10(1):104
6. Pulay P (1982) J Comput Chem 3(4):556
7. Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP

completeness. Freeman, NY
8. Panas I, Alml6f J, Feyereisen MW (1991) Int J Quant Chem 40:797
9. Program ~446, Quantum Chem Program Exchange, Indiana Univ, Bloomington

I0. Pople JA, Hehre WJ (1978) J Comp Phys 77(20):161
11. Head-Gordon M, Pople J (1988) 89(9):5777
12. Obara S, Saika A (1986) J Chem Phys 84(7):3963
13. Knuth DE (1984) The Computer J 27(2):93
14. Pascoe GA (1986) Byte 11(8):139
15. Meyer B (1987) IEEE Software 4(2):50
16. Gaussian 90, Rev I (1990) Frisch MJ, Head-Gordon M, Trucks GW, Foresman JB, Schlegel HB,

Raghavachari K, Robb M, Binkley JS, Gonzalez C, Defrees D J, Fox D J, Whiteside RA, Seeger
R, Melins CF, Baker J, Martin RL, Kahn LR, Stewart JJP, Topiol S, Pople JA, Gaussian Inc,
Pittsburgh PA

17. Early computer pundits believed there was little need for high-speed computers since only a
limited number of mathematical tables were needed by the scientific community. (Described in:
Von Neuman J (1946) transcript of talk given at the Princeton Institute for Advanced Study,
May 15, 1946. Office of Nav~l Research, Wash DC)

18. Dongarra JJ (1992) Supercomputing Rev 5(3):54
19. 32 Processors have 32 Mbytes and the remaining 32 processors have 8 Mbytes

