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Summary. Quantum chemistry has become an essential tool in many areas of 
chemical research; however, quantum chemistry is not yet playing a role in many 
exciting new chemical disciplines, such as medicinal chemistry and materials 
science, where the size of the chemical systems has been too large to study using 
ab initio chemical methods. The development of massively parallel supercomput- 
ers offers the potential to predict properties relevant to a variety of problems in 
these burgeoning new fields. The goal of this project is to develop a set of 
parallelized "production codes" for initially a relatively limited set of methods. 
As a key part of this project we are experimenting with the use of modern 
programming languages and methodologies to make these programs both 
portable and reusable. This paper describes the development of a massively 
parallel direct SCF program, MPSCF. For  systems over a few hundred basic 
functions, MPSCF running on 256 nCUBE processors performs nearly as well as 
Gaussian 90 running on a single processor Cray Y-MP. On the next generation 
of parallel computers, such as the Intel Touchstone Delta, MPSCF should allow 
the SCF calculations on chemical systems too large for vector supercomputers. 
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1 Introduction 

Quantum chemistry has become an essential tool in many areas of chemical 
research; however, quantum chemistry is not yet playing a role in many exciting 
new chemical disciplines, such as medicinal chemistry and materials science, 
where the size of the chemical systems has been too large to study using ab initio 
chemical methods. Yet the relatively low accuracy needed to provide useful 
results and their tremendous practical importance make these very promising 
new applications for quantum chemistry. The development of massively parallel 
supercomputers offers the potential to predict properties relevant to a variety of 
problems in these burgeoning new fields. We envision two broad classes of 
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parallel computer becoming important in the next few years. The first are the 
massively parallel supercomputers such as the nCUBE 2 and the Intel Touchstone 
which can outperform vector supercomputers for some applications. The other 
will be implicit in the large networks of high-performance workstations located 
in many research institutions. Harnessed together to work on a single calculation, 
these local area networks (LANs) constitute a very large, as yet untapped 
resource. However, the relatively limited bandwidth of current LANs will limit 
their performance in the near future. Both of these classes of parallel computers 
involve unique programming challenges and since our goal is to perform 
calculations on extremely large chemical systems we have focused our develop- 
ment effort on the massively parallel supercomputers. 

The potential of parallel computers has not gone unnoticed by quantum 
chemists. Since the mid-1970's there have been several efforts to parallelize 
quantum chemistry programs [1, 2]. However, due to the experimental nature of 
the early parallel computers, these programs were mainly "proofs of principle" 
and not alternatives to production programs on serial computers. With advances 
in parallel processing hardware, there has been a growing interest among quantum 
chemists. A recent conference on parallel quantum chemistry [3] attracted more 
than thirty participants who presented papers on parallel SCF and post-SCF 
methods. 

The goal of this project is to develop a set of parallelized "production codes" 
for initially a relatively limited set of methods. As a key part of this project we 
are experimenting with the use of modern programming languages and method- 
ologies to make these programs both portable and reusable. This paper describes 
the first step in this effort, the massively parallel direct SCF program, MPSCF. 

2 Algorithms 

Developing algorithms for parallel computers is particularly challenging due to 
the fact known as "Amdahl's law" - that the parallel speedup is at best the 
inverse of the fraction of the code that is serial. This fact frequently undermines 
the effectiveness of automatic parallelizing compilers, especially for large hetero- 
geneous programs typical of quantum chemistry applications. Hence, parallel 
programming is not automatic and involves manually breaking up algorithms 
into individual modules to run on different processors. Although there are a 
large number of different parallel architectures available, at this time message- 
passing, multiple-data multiple-instruction (MIMD) [4] architectures are the 
most flexible and extensible. For this reason we are targeting this general class of 
machine with the specific goal of using the nCUBE/2 and the Intel i860 and Intel 
Delta computers. (See Appendix for a detailed description of these computers.) 

The first quantum chemical application that we have parallelized is the 
self-consistent field (SCF) method. A simplified version of the computational 
steps involved in a direct SCF are shown in Fig. 1. The SCF method is an 
iterative procedure involving the repeated formation and diagonalization of a 
matrix of order up to a few thousand for our chemical applications. The iterative 
procedure naturally separates into two portions, the matrix operations (steps 2, 
4, & 5) and the Fock matrix formation which will be separately discussed in the 
following paragraphs. As implemented, MPSCF is slightly more sophisticated 
than the algorithm described in Fig. 1. In particular, rather than calculate the 
Fock matrix directly as shown in step 3, only the change in the Fock matrix 
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Steps in SCF calculation: Computational complexity 
in terms of # basis functions, N 

1) Generate initial guess at SCF vector C. 
2) Form density matrix P = CtC. O(N 3) 
3) Calculate two electron integrals O(N 4) 

and combine with P to form Fock matrix F: 

F~v = Y P.(C.u I~°~ - ½C.~ I u~)) 
2a 

4) Transform F using the inverse root of the overlap matrix: 
F t = S -  1 / 2 t 7 S -  1/2, O ( N  3) 

5) Calculate eigenvectors of F* and O(N 3) 
backtransform to form new C. 

6) Stop if C is converged, else go to 2. 

Fig. 1. Steps in the two-electron portion of a self-consistent field (SCF) calculation 

is calculated: 
new = F o l d  F~v -~v + Z APao[(#v I 2a) -- ½(#2 Iva)] 

2a 

The advantage of this approach is that as the calculation converges the elements 
of  AP becomes small. This, along with methods for estimating the upper bounds 
of two-electron integrals (discussed later) drastically reduces the computational  
effort of  forming the Fock matrix [5]. 

Additionally, MPSCF includes the DIIS method developed by Pulay for 
accelerating SCF convergence [6]. The DIIS procedure involves extrapolating the 
Fock matrix as a linear combination of Fock matrices that minimize the error 
matrix: 

g = E P S - S P F  

Computationally,  DIIS  involves several matrix multiplies and the solution of a set 
of  linear equations of  very low order (typically 5). 

A natural way to parallelize SCF is to distribute the matrix formation and 
manipulation. An important  initial consideration is whether to distribute the 
storage of the matrices or just the computational  load. For  a direct SCF 
calculation at minimum both the Fock and density matrices must be available on 
the processing nodes. This requires nbasis*nbasis (nbasis = #bas is  functions) 
double precision words to be stored. Since we are interested in running calcula- 
tions with up to several thousand basis functions we will not be able to fit complete 
copies of  these matrices on each node of even the largest parallel computers now 
available. There are many possible schemes for evenly distributing the storage of 
square matrices. For  example, in a column distribution scheme each processor 
would be assigned one or more columns of the matrix. In block distribution, each 
processor is given a set of  submatrices obtained by dividing the matrix into 
sub-blocks. However, the additional need to both minimize and evenly balance 
the computational  load adds more constraints. The expressions for the two-elec- 
tron integrals over basis functions in the same shell block involve many common 
sub-expressions. The efficiency of calculating these terms can be greatly improved 
by calculating such groups of integrals as a batch. As shown in the equation in 
Fig. 1, each Fock matrix element, Fay, contains contributions from the integrals 

I ha) and (#2 [ va). Therefore, if shell blocks of  the Fock matrix are assigned 
to the processors so that all # ' s  and all v's in a particular shell block are on the 
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same processor the integral efficiency is greatly increased. Moreover, such a 
distribution of the density matrix elements facilitates the estimation of upper 
bounds on the Fock matrix elements (vide infra). For many of the matrix 
operations, however, the most efficient algorithms currently available require the 
matrices distributed by column. Hence, in the present version of MPSCF, the 
block-distributed matrices are converted to column distribution for some of the 
matrix manipulations. 

Since the size and computational effort associated with each shell block is 
different, the load balancing of the Fock matrix formation becomes an issue. For 
this type of problem optimal load balancing is very difficult, formally equivalent to 
the knapsack problem known to be NP complete [7]. However, the number of 
shell blocks is roughly proportional to the number of basis functions squared, 
while the maximum number of processors we can efficiently use it less than half of 
the number of basis functions (see section on parallel matrix diagonalization). 
Hence, even the simple method placing equal numbers of shell blocks (albeit all of 
different size) on each processor yields adequate load balancing for the benchmark 
reported herein which included only s and p type shell blocks. For cases involving 
larger angular momentum or derivative integral evaluation, the variance in shell 
block size will be much larger so that a more careful analysis is needed. Work is 
underway to examine the effect that a more sophisticated distribution scheme can 
have on load ~alancing for high angular momentum cases. 

Since each Fock matrix element contains contributions from every density 
matrix element, some form of communication is required between every pair of 
processing elements during each SCF iteration. Many "complete shuffle" al- 
gorithms are possible, but the simplest and least hardware dependent is a systolic 
loop. All of the processors are assumed to be connected in a one-dimensional loop 
(which can easily be embedded in a hypercube or mesh topology) and data packets 
are passed around the ring in as many systolic steps as there are processors. 

For the Fock matrix formation each processor sends out its density matrix 
blocks and initially empty message buffers to accumulate contributions to its 
locally held set of Fock matrix blocks (see Fig. 2). To illustrate this procedure, 
consider the set of blocks APao and F~.~ arriving on the processing node assigned 
the #v blocks. If the integral estimation procedure indicates that they are 
significant, the processor computes the coulomb integrals (#v 12o-) and the 
exchange integrals (#2 I va) and (#r~ Iv2). Note that if there are coincidences in 

~v,  AP~v 

E~, APx~ 

Fig. 2. Formation of the Fock 
matrix on a systolic loop of 
processors. Each node makes 
contributions from its locally held 
density matrix elements and integrals 
to the Fock matrix dements being 
passed around the loop. 
Additionally, the node makes 
contributions from the density 
matrix elements being passed around 
the loop to its locally stored Fock 
matrix dements 

,( 
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the shell indices, some of these blocks are redundant. From these integral blocks, 
contributions must be made to the locally held Fock matrix elements: 

F~,v +- P~o(2~r I/~v) 

and the Fock elements being communicated around the ring: 

e v( v [ 
After all of the AP and F blocks have been sent around the processor ring, the 
full two-electron Fock matrix has been formed. At this point the one-electron terms 
are added and the Fock matrix is ready for transformation and diagonalization. 

The computer time required for the formation of the Fock matrix is dominated 
by the calculation of the two electron integrals. The actual number of operations 
to evaluate an integral is very dependent on the basis function angular momentum 
and the exact algorithm chosen. For the purpose of this simple analysis we will 
assume that an average of a double precision (DP) floating point operations is 
required. Hence, the total number of operations to form the Fock matrix will 
range from about a N  4 down to approximately a N  2, if integral cutoffs are used, 
(see below). Assuming that this work is evenly distributed over the processors 
(p = the number of processors) and 7 is the processor speed in DP floating point 
operations per second (FLOPS) the Fock matrix formation will require at 
minimum aN2/p7 seconds. To pass the density and Fock matrix blocks around 
the loop of processors requires p successive sends of approximately N2/p D P  
words of data between neighboring processors. If  we assume the startup latency 
for communication is a seconds and the communication bandwidth between nodes 
is fl D P  words per second, the total communication time will be p~ + N2/fi. This 
leads to a worst-case computation/communication ratio of aN2fl/[yp(pa + N2)]. 
Assuming 7 ~ fi and a is small, communication will start to dominate this step 
when a N  2 < p N  2. Using our current two electron integral algorithm, a is in the 
range of 100-1000 operations, so that the communication time is substantially less 
than the computation time. This ratio is improved by the fact that the communi- 
cation and computation is overlapped, so that processors are not idle during the 
communication of the next set of shell blocks. 

This algorithm requires storage of N2/p elements of the density and Fock 
matrices per node. Additionally, an equal amount of message buffer space is 
required. For the problems we have studied (<350 basis functions) these 
required less than 32 Kbytes per node, an insignificant fraction of the available 
memory on any of the parallel computers used (see Appendix). 

Since the two electron integrals do not change during the SCF calculation a 
choice must be made whether to precalculate and store the integral list or to 
recalculate them in each i te ra t ion-  this latter option is the "direct" SCF 
method. Due to the limited memory and lack of efficient parallel I/O, storing the 
integral list is impractical on massively parallel computers. Nevertheless, while 
precalculating the integrals might seem to save much computational effort, there 
are two reasons why direct methods are efficient even on serial computers. The 
first is that the integral lists are so large that they must be stored on magnetic 
disk, so the retrieval time can be a significant fraction of the time required to 
recalculate the integral. More importantly, as will be described below, there are 
fast methods for determining in each iteration which integral blocks need not be 
calculated because they will not have significant contributions. A detailed 
analysis of the algorithms necessary to perform SCF calculations on very large 
systems has been performed by Panas et al. [8]. 
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The integral estimation scheme implemented in MPSCF is that described by 
H~iser and Ahlrichs [5]. This method exploits the relation: 

v I (vv I I  0")1/2 
Thus, to form the upper limit of any integral the matrix: 

Q,v = (/zv I#v) l/2 

is required. Actually since the integrals are computed by shell blocks Q need only 
be nblocks x nblocks. The Q matrix is precalculated in parallel and matrix 
element Q,v is distributed to all processors "responsible" for integrals (#v/20"). 
During each iteration, the upper bound of an integral sub-block is multiplied by 
the corresponding element of AP and compared to a threshold (typically 10- lO). 
If this value is below the threshold then the integral block is excluded from 
contributing to the Fock matrix. In order to determine the effect of such cutoffs 
on large direct SCF calculations, we ran a variety of different test calculations 
using Gaussian 88 (which uses a simple integral cutoff algorithm) on our Cray 
X-MP. The exponent of the overall computational complexity of the direct SCF 
was determined using the relation: 

( t ime~ 
log \ ~ /  

Exponent = ( .hi 
log \nbfrefj 

In this expression "time" is the total CPU time for the direct SCF calculation on 
a problem whose number of basis functions equals "nbf". Similarly "timeref" is 
the time for the reference calculation which has "nbfref" basis functions. A 
medium sized, 133 basis function test case was used as a reference rather than a 
very small test case in order to reduce the effect of overhead (such as reading the 
input) on the timing results. The results, shown in Fig. 3, indicate that the cutoffs 
can dramatically reduce the computational complexity of the direct SCF from 
O(N 4) to O(N2'5), approaching the predicted asymptotic quadratic complexity 
[8]. Note that the exact values of these exponents are somewhat dependent on 
both the detail of the test calculations (e.g. the type of basis set and the shape 
of the molecules) and the size of the reference compound. 
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Fig. 3. Basis function power dependence for 
complete direct SCF calculations using Gaussian 
88 running on a Cray X-MP 
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As initially implemented, MPSCF used the sp block integral subroutine 
"SHELL" from Gaussian 80 [9, 10] and was limited to only s and p type basis 
functions. We are currently implementing a much more sophisticated integral 
algorithm outlined by Head-Gordon and Pople [11]. This involves constructing 
each set of contracted integrals (ab I cd) by first computing (e0 If0) where a, b, 
c and d give the angular momentum on each center and e = a + b, f = c + d. The 
integrals (e0 If0) are formed by contracting auxiliary integrals for each set of 
primitive quartets which are computed using the vertical recursion relation of 
Obara and Saika [12]. The horizontal recursion relation of Head-Gordon and 
Pople is then used to shift the angular momentum of the (e0 If0) integrals until 
the target integrals are formed. This algorithm will allow the inclusion of basis 
functions with arbitrarily high angular momentum. 

The results in Fig. 3 indicate that for large chemical systems (above a few 
hundred basis functions) the integral estimation schemes mentioned above 
decrease the computational complexity of the Fock matrix formation from 
O ( N  4) down to O(N25). Hence for chemical systems of the size we are interested 
in studying, the Fock matrix formation will have an asymptotic complexity that 
is lower than the matrix operations which are O(N3). Of course the multiplier of 
these complexities is different; approximately 100 for the Fock matrix formation 
(see analysis above) and 10 for the matrix manipulations. Nevertheless, for large 
problem sizes the matrix manipulations will start to dominate the SCF computa- 
tion even on serial computers. In a parallel direct SCF program with the 
distributed Fock matrix formation and serial matrix manipulations, the problem 
is even more acute. Hence in order to use efficiently even a modest number of 
processors it is important to parallelize the O(N 3) matrix manipulations. 

Using our distributed matrix library (implementation described in next 
section) we have parallelized all of the matrix operations (except for the disk I/O 
which is inherently serial on our nCUBE 2). At present this library supports 
matrices distributed by sub-blocks and by columns. The two most common (and 
time consuming) matrix operations in the SCF program are multiplication and 
diagonalization. The matrix multiplication is implemented for both the column 
and block-distributed matrices. However a "direct" implementation of the 
matrix multiplication for the block-distributed matrix requires a large amount of 
communication since to perform C =A * B, the product (AikBgj) must be 
formed for every combination of sub-blocks. To minimize the communication 
required to form these products, the matrices A and B are converted from block- 
distributed to column-distributed format. Then, the columns of the matrix A are 
shipped around the loop of processors combining with locally held columns of B 
to form C. After the columns have been transmitted completely around this loop, 

is° t ~ 512 x 512 matrix 2 0 [  512 x 512 matrix 1 
~ diagonalization ~ multiplication 

°°I 

32 64 128 256 16 32 64 128 256 512 
Number of Processors Number of Processors 

Fig. 4. Parallel timings for 
matrix operations on the 
nCUBE 
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(requiring 4~ processor steps), the column-distributed C matrix has been com- 
pleted. Timing results for a 512 x 512 matrix multiply are shown in Fig. 4. 

Using the definitions for p, N, e,/3, and 7 defined in the analysis of the Fock 
matrix formation, the total time required for the floating point operators is 2N3/py 
seconds. The total time required to pass a block containing a column of N values 
around a loop N times is N(c~ + N/B), leading to a computation-communication 
ratio of 2NZ/[pT(o~ ÷ N/fl)]. The matrix multiply requires storing at most N2/p 
matrix elements on each node (with a minimum of one column from each matrix 
in the case where p > N). 

The parallel matrix diagonalization is based on an early version of Cleve 
Moler's Eiscube routines. Basically, this is a column-distributed Householder 
tridiagonalization followed by QR iteration. The timing results for this procedure 
are also given in Fig. 4. The analysis is somewhat more complex than for the 
matrix multiply. The total floating point operations required are 9N 3, giving a 
total time of 9N3/pT. The matrix diagonalization requires a combination of  global 
broadcasts and reductions. This was implemented using the hypercube connectiv- 
ity to yield a total communication cost of  3N(e + N/2B) log2(p) and a computa- 
tion-communication ratio of 3NZ/[py(o~ +N/2/?)log2(p)].  The diagonalization 
must store the original matrix, its eigenvectors and the tridiagonal reduction 
space, yielding a total memory requirement of 3N2/2 words of memory. 

3 Implementation 

Implementation style has traditionally been a minor consideration in the develop- 
ment of quantum chemistry programs. The emphasis on program efficiency and 
the relatively awkward structuring and memory allocation features of F O R T R A N  
have conspired to create quantum chemistry programs built of  specialized 
subroutines that were opaque and difficult to re-use. Similarly, since individual 
quantum chemistry programs are usually used by small groups of users on a 
narrow class of computers, usable documentation of the internal workings of the 
programs is rare. This is particularly true for documentation of  how the data is 
organized within the programs. High-level data constructs such as the wave 
function or basis set have components scattered across common blocks, inhibiting 
code re-use and intelligibility. Despite these difficulties, quantum chemistry has 
thrived; however, the growing complexity of the algorithms and the user interface, 
as well as the need to port these codes to complex computer architectures will 
require an increased emphasis on implementation issues within the community. 

As an experiment we have implemented MPSCF using modern programming 
methods intended to increase code portability and re-use. MPSCF is written in 
the "C"  programming language using a system for embedded code documentation 
called WEB [13]. Additionally, MPSCF uses object-oriented programming 
methodology [14] (although it's not written in a formally object-oriented language 
such as C + +) .  

Our choice of the C programming language was primarily motivated by 
the availability of user-defined data types and standardized memory allocation 
and de-allocation*. The ability to create "aggregate" data types allows the 

* Other advantages of C include: standardized file I/O, compatibility with UNIX system libraries, 
and numerous commercial and public-domain programming tools. 
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programmer to more naturally organize high-order data objects. For example, the 
specification for a basis function data type could include in a single entity all 
information associated with a particular basis function. This greatly simplifies the 
organization of data within a program and leads to enhanced code reusability. 

Additionally, we are going beyond the C language capability to describe 
aggregate data types by using a language we have developed to describe both data 
types and operations on that data type (analogous to classes in C+  + without 
the rigorous protection of private data). Minor extensions to the C syntax have 
been implemented to allow the automatic generation of subprograms to perform 
many possible operations on complex aggregate data types. These operations 
include reading and writing to many file formats, initializing the data types, 
releasing the memory allocated for the data types, and sending and receiving the 
data types between nodes of a parallel computer. Since the generation of these 
routines is completely automatic it is only necessary to modify the type description 
file and all of the routines for manipulating the type are updated. This greatly 
reduces the work associated with implementing and modifying complex data 
types. Currently, the basis set and atomic center information is handled using this 
facility. 

The ability in C to allocate and free arbitrary chunks of memory also enhances 
code reusability since temporary storage can be allocated locally, simplifying the 
interface between different portions of programs. Such local memory allocation 
also allows memory to be used more efficiently which is particularly important on 
massively parallel computers where memory is relatively limited. 

In the WEB language, the program documentation and source are combined. 
The program file (a ".web" file) can be run through preprocessors to produce 
either a TeX document or a C-language source file (see Fig. 5). In addition to 
simple text formatting, the WEB system provides a detailed index to the variables 
and subroutines as well as a sophisticated "macro" facility to allow cleanly written 
code without excessive numbers of subroutines. Since it is written in WEB, the 
MPSCF program can be printed out as a readable "book" where each logical 

SCF.web 

hy  ~5e ~arges~ density matrix element, and i f  t ~ i s  i s  sma l l ,  
~kip ~he evaluation o~ t~e integral block. 

contrib . , ~s tm~ j  , e s ~ l o g [ l o c a l b ]  'MaxPIJMI:  

17 7contzi~ • c z n ~ s n ~  t 

) 
) 

SCF.tex "Weave" p r o /  

§6~ A ~ Y ( ~ t f i ~  ( $ ~ . )  " [ ~  TWO- ELSCq~ ON CONTip/BI/f ION ] O A p 2.6 

}} 

~ e " p ~ ° g r a l C F .  c 

d~ubl~  = o n t r l b :  
co~ t=±b -  .~,t~ij • e , t l o g t X o = , l b ]  

17 i c o n t , i b  • CT~R~S~) { 

~ v e c [ O l - ~ . h ;  l v e c i l l - J s h :  i w c [ 2 1 - . , h :  

t E N t ~ . r , , ~ l l - ) ;  

i H  

Fig. 5. Example of SCF.web code and c-source and TeX files generated using WEB programming tools 
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segment of the program is a separate chapter. This book contains a table of 
contents to the major program segments and an index of the variables and 
program sub-segments. 

The MPSCF program is built on top of an object-oriented distributed matrix 
library. This library is written in C which is not formally an object-oriented 
language; however, with some effort, object-oriented methodologies can be used 
when coding in C. The key concept behind the object-oriented methodology is to 
encapsulate the high-level data structures and the associated functions. Experi- 
ence on a wide variety of software applications has shown that this methodology 
produces particularly robust and re-usable code [15]. 

We implemented all of the linear algebra operations requried by the direct SCF 
algorithm in the distributed matrix library. Matrices are declared with a specific 
size and parallel distribution scheme and all matrix operations are carried out using 
functions within the library. The distribution of the matrix and the details of the 
function implementation are transparent to the user. For example, the transfor- 
mation and diagonalization of the Fock matrix would include the following code: 

{ 
matrix s_half = dmLereate("S**(1/2)",nbasis,SCATTgRED); 
matrix foek = dmt_create("Foek matrix",nbasis,SCATTERgD); 
matrix trap = dmt_ereate("Temp matrix",nbasis,COLUMNS); 
matrix foek_trans = dm_ereate("Trans.F matrix",nbasis,COLUMNS); 
matrix tmp= dmt_ereate("Temp matrix",nbasis,eOLUMNS); 

/* Form s_half and foek (code not shown) */ 

dmt_mult(s_half, foek,tmp); 
dmt_mult(tmp,s_half, foek_trans); 
dmt_diag(fock_trans,eig_vect,eig_val); 

dmLwrite("scf_vect.dat",eig_vect); 
dmt_free(tmp); 

} 
In the example, we first create four matrices using the dmt_create routine. 

This associates a label, size, and distribution scheme with each of the matrices 
and allocates memory on each node. After the Fock and S 1/2 matrices have 
been created (code not shown), the dmt_mul t  routine is used to transform the 
Fock matrix and dmt_diag is used to diagonalize the  result. Finally, the 
eigenvector is written out to disk and the memory allocated for the temporary 
matrix, tmp, is released. 

4 Results and discussion 

Parallel results traditionally have been presented solely in terms of speedup 
curves (i.e. comparing an algorithm running on many processors to the same 
algorithm running on one processor). Unfortunately these can be misleading for 
a number of reasons. The main problem is that the best parallel algorithms are 
rarely the best for serial computers. Hence the reference "single-processor" 
timings on which the speedup results are based are usually biased in favor of the 
parallel implementation. A better performance measure is to compare the 
parallel implementation to a state-of-the-art serial implementation running on an 
appropriate serial or vector computer. (Speedup results can augment these 
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performance comparisons to indicate how the parallel implementation will scale 
up to larger parallel computers.) 

For  this reason we compared the performance of MPSCF with Gaussian 90 
[16] running on a Cray Y-MP 8/864. The benchmark problems were a series of 
cytosine polymers run with a 3-21G basis set in CI symmetry yielding test 
problems with 82, 164, 246, and 328 basis functions. Figure 6 shows the results 
for the test problems on different numbers of processors. Since the matrix 
diagonalization is efficient only when the number of basis functions is greater than 
the number of processors, we were limited to 256 processors (1/4 of the nCUBE 
2) for even the largest of the test cases. 

The results were very encouraging. For  systems over a few hundred basis 
functions, MPSCF running on 256 nCUBE processors performs nearly as well as 
Gaussian 90 running on a single processor Cray Y-MP. Hence, for large problems, 
the current version of MPSCF running on the full nCUBE should give roughly 
four times the through-put of Gaussian 90 running on a Cray Y-MP (since 
Gaussian can only use one processor at this time). Since the estimated peak 
performance of a single Y-MP processor is nearly that of 256 nCUBE 2 nodes, 
these results indicate that MPSCF has a net efficiency on the nCUBE comparable 
to the efficiency of Gaussian 90 on the CRAY (but both are well below the peak 
efficiency). This is significant because new parallel computers are considerably 
more cost effective in terms of actual cost per unit of floating point performance 
than vector supercomputers. Hence, for large-scale SCF calculations parallel 
computers should be considerably more cost effective than vector supercomputers. 

To get estimates of the asymptotic performance of the MPSCF program we 
ran two speedup test sequences. These curves along with the ideal speedup line 
are shown in Fig. 7. Due to the limited memory on each node, these speedups 
were calculated from relatively small test cases. The lower curve is the speedup 
for the 82 basis function cytosine monomer calculated relative to the timing on 
a single processor. The middle curve is the speedup for the 164 basis function 
cytosine dimer calculated relative to the timing on four processors (the smallest 
number having enough total memory to run the problem). For  both of these test 
cases the parallel efficiency rapidly drops off as the number of processors gets 
greater than about half the number of basis functions. The reasons for this drop 
in efficiency are shown in Fig. 8. This figure compares the timings for the Fock 
matrix formation and the matrix manipulations for the 82 basis function test 
case running on different numbers of nCUBE 2 processors. The Fock matrix 
formation is very efficient, even on 128 processors the parallel efficiency is greater 
than 60%. In contrast, the matrix manipulation shows no speedup for more than 
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16 processors and on 128 processors is requiring almost half as much time as the 
Fock matrix formation (as compared to 3% on a single processor). This 
indicates that the column distribution used in the matrix manipulations will limit 
the performance of the parallel direct SCF unless the number of  basis functions 
is much greater than the number of  processors being used. 

5 Conclusions and future work 

The results presented here show that for some applications, parallel computers 
are a cost-effective alternative to vector supercomputers. However, the next 
generations of  parallel computers will have a much more significant impact since 
they will provide the capability to perform quantum chemical calculations that 
are at present unfeasible. Although predictions of  future computational  needs 
and capabilities are notoriously inaccurate [ 17] they provide a useful measure of  
future successes. Figure 9 is a projection of single point direct SCF capabilities 
on a wide range of serial and parallel computers. This projection was made 
assuming typical biochemical composition using 6-31G** basis sets. We assumed 
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that the SCF computation time would scale as N 25 and included very crude 
estimates of the communication overhead and processor efficiency. This plot 
contains several interesting results. One is that local area networks of high-end 
workstations will prove to be impressive computational resources, comparable to 
single processors of vector supercomputers. However, the relatively low band- 
width of conventional LAN's (e.g. ethernet) will not allow such networks to 
supplant the role of parallel supercomputers. Another exciting implication of these 
projections is that with the arrival of the Touchstone Delta, parallel computers 
have sufficient power to allow SCF calculations on chemical systems large enough 
to truly interest researchers in medicinal chemistry and materials science. 

We plan eventually to extend the parallel quantum chemistry package to 
include electron correlation methods such as coupled cluster and configuration 
interaction. However, the difficulty of efficiently parallelizing these extremely 
complex algorithms is overwhelming for a single research team. It is our hope that 
the development of new programming tools and methodologies, such as those 
described in this paper, will lead to more cooperative program development within 
the quantum chemistry community. Such community synergism, combined with 
the arrival of powerful new computer architectures, will guarantee that quantum 
chemistry will play an important role in the exciting new fields of chemical 
research. 

Appendix 

The performance characteristics of parallel computers are constantly changing, 
but to inform the reader of the current state-of-the-art, the following table lists 
the vital statistics for the nCUBE/2 and Intel IPSC/i860 installed and Sandia 
National Laboratories and the Intel Touchstone Delta installed at the Concurrent 
Supercomputing Consortium at the California Institute of Technology. The CPU 
speeds and interprocessor communication rates are the estimates provided by the 
manufacturers and should be interpreted as the "upper limits" on actual 
capabilities. The estimated processor speeds, theoretical peak performances, and 
DP Linpack benchmark results are from Dongarra [18]. The interprocessor 
communication rates for the nCUBE and Intel i860 are our measured interproces- 
sor bandwidths. The bandwidth for the Intel Delta are Intel's predicted peak rates. 
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Computer # Processors Estimated Memory per Interprocessor Theoretical Performance 
processor processor communication peak on DP 
speed bandwidth performance Linpack 
(MFLOPS) (Mbytes/sec) (MFLOPS) benchmark 

(MFLOPS) 

nCUBE/2 1024 2.4 4 Mbytes 1.5 Mbytes/sec 2400 1900 
(Sandia) 
Intel i860 64 40 8 Mbytes 2.1 Mbytes/sec 2600 1400 
(Sandia) /32 Mbytes [19] 
Intel Delta 512 40 16 Mbytes 200 20000 13900 
(Caltech) Mbytes/sec 

Acknowledgments. This work was carried out at Sandia National Laboratory under contract by the 
U.S. Department of Energy and supported by its Division of Basic Energy Sciences. 

References 

1. Clementi E, Corongui G, Detrich JM, Domingo L, Laaksonen A, Nguyen HL, Chin S (1984) 
Tech Report No POK-40, IBM 

2. Colvin ME, Whiteside RA, Schaefer HF III (1989) in: Wilson S (ed) Methods in quantum 
chemistry Vol 3. Plenum, NY, p 167 237 

3. Parallel Computing in Chemical Physics (1991) Org Theoret Chem Group, Argonne Natl Lab, 
July 17-19, 1991. 700 S Cass Ave, Argonne, IL 60439 

4. MIMD parallel computers consist of independent, interconnected CPU's communicating via 
wires (message-passing) or a common memory bank (shared-memory). Shared memory MIMD 
computers are easier to program than message-passing computers, but at this time cannot 
efficiently interconnect large numbers of processors. Conversely, a message-passed architecture 
can be readily emulated by a shared-memory computer. An alternative to MIMD architectures 
is single-instruction multiple-data (SIMD) in which all processors work in lock-step, performing 
identical instructions on different data streams 

5. H~iser M, Ahlrichs R (1989) J Comput Chem 10(1):104 
6. Pulay P (1982) J Comput Chem 3(4):556 
7. Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP 

completeness. Freeman, NY 
8. Panas I, Alml6f J, Feyereisen MW (1991) Int J Quant Chem 40:797 
9. Program ~446, Quantum Chem Program Exchange, Indiana Univ, Bloomington 

I0. Pople JA, Hehre WJ (1978) J Comp Phys 77(20):161 
11. Head-Gordon M, Pople J (1988) 89(9):5777 
12. Obara S, Saika A (1986) J Chem Phys 84(7):3963 
13. Knuth DE (1984) The Computer J 27(2):93 
14. Pascoe GA (1986) Byte 11(8):139 
15. Meyer B (1987) IEEE Software 4(2):50 
16. Gaussian 90, Rev I (1990) Frisch MJ, Head-Gordon M, Trucks GW, Foresman JB, Schlegel HB, 

Raghavachari K, Robb M, Binkley JS, Gonzalez C, Defrees D J, Fox D J, Whiteside RA, Seeger 
R, Melins CF, Baker J, Martin RL, Kahn LR, Stewart JJP, Topiol S, Pople JA, Gaussian Inc, 
Pittsburgh PA 

17. Early computer pundits believed there was little need for high-speed computers since only a 
limited number of mathematical tables were needed by the scientific community. (Described in: 
Von Neuman J (1946) transcript of talk given at the Princeton Institute for Advanced Study, 
May 15, 1946. Office of Nav~l Research, Wash DC) 

18. Dongarra JJ (1992) Supercomputing Rev 5(3):54 
19. 32 Processors have 32 Mbytes and the remaining 32 processors have 8 Mbytes 


